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ABSTRACT

During the austral summer 2015/16, severe flooding displaced over 170 000 people on the Paraguay River system in

Paraguay, Argentina, and southern Brazil. These floods were driven by repeated heavy rainfall events in the lower

Paraguay River basin. Alternating sequences of enhanced moisture inflow from the South American low-level jet and

local convergence associated with baroclinic systems were conducive to mesoscale convective activity and enhanced

precipitation. These circulation patterns were favored by cross-time-scale interactions of a very strong El Niño event, an
unusually persistentMadden–Julian oscillation inphases 4 and5, and thepresenceof a dipole SST anomaly in the central

southern Atlantic Ocean. The simultaneous use of seasonal and subseasonal heavy rainfall predictions could have

provided decision-makers with useful information about the start of these flooding events from two to four weeks in

advance. Probabilistic seasonal forecasts available at the beginning of November successfully indicated heightened

probability of heavy rainfall (90th percentile) over southern Paraguay and Brazil for December–February. Raw sub-

seasonal forecasts of heavy rainfall exhibited limited skill at lead times beyond the first two predictedweeks, but amodel

output statistics approach involving principal component regression substantially improved the spatial distribution of

skill for week 3 relative to other methods tested, including extended logistic regressions. A continuous monitoring of

climate drivers impacting rainfall in the region, and the use of statistically corrected heavy precipitation seasonal and

subseasonal forecasts, may help improve flood preparedness in this and other regions.

1. Introduction

During the austral summer of 2015/16, repeated heavy

rainfall events led to severe flooding in the lower Paraguay

Riverbasin (LPRB) (Figs. 1 and2), displacingapproximately

170000 people (Brakenridge 2016) and causing tremen-

dous damage to property and infrastructure (Ministerio

de Obras Públicas y Comunicación 2016). Because pop-

ulation in South America tends to concentrate along

coasts and rivers (Fig. S1 in the supplemental material),

flooding in theLPRBdirectly affects not onlymuch of the

population of Paraguay, but also of populations in Ar-

gentina and Uruguay along the Paraná and La Plata

Rivers, into which the Paraguay River drains. Heavy

rainfall and flooding in the LPRB also has important

implications for hydropower generation, agriculture, and
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regional water resource management. The aim of this

paper is to diagnose the drivers of the November–

February (NDJF) 2015/16 rainfall and flooding events

and to assess the skill of the relevant subseasonal-to-

seasonal predictions.

The climatology of the LPRB varies strongly by

season, with extratropical characteristics in the winter

and monsoonal characteristics in the summer. The

most notable circulation features during the warm

season (NDJF), which is the focus of this study, are the

upper-tropospheric Bolivian high, the lower-level

subtropical highs, the Chaco low over northern

Argentina, the South Atlantic convergence zone

(SACZ), and the South American low-level jet

(SALLJ) (Grimm and Zilli 2009; Marengo et al. 2012).

Rainfall peaks around 5 mmday21 during the warm

FIG. 1. Topographical map of the study area. Colors indicate log10 of elevation (m) from the Global Land 1-km

Base Elevation Project (available online at http://iridl.ldeo.columbia.edu/SOURCES/.NOAA/.NGDC/.GLOBE/.

topo/). (a) All of South America, with the domains of the LPRB and the domain used for weather typing indicated

in red and blue boxes, respectively. (b)As in (a), the LPRB ismarkedwith a red box. (Streamflow time series shown

in Fig. 3 were taken from the four stations indicated.) The Paraguay River and its tributaries, from the Natural

Earth Database (www.naturalearthdata.com), are also shown in (b). Stations shown are Bahía Negra (BNE),

Concepción (CON), Asunción (ASU), and Pilar (PIL).

FIG. 2. Monthly composite anomalies observed during NDJF 2015/16, for (a)–(d) c850 (10
6 m2 s21) and (e)–(h) rainfall (mmday21).
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months (October–May) and reaches a minimum near

2 mmday21 in July and August. However, the flat to-

pography limits the river’s ability to carry the summer

runoff, causing seasonal inundation of the Pantanal

and distributing the river discharge in time (Bravo

et al. 2011; Barros et al. 2004). Thus, upstream of the

Pantanal the streamflow maxima typically occur in

phase with precipitation, while downstream of the

Pantanal—an area that we define in Fig. 1 as the lower

Paraguay River basin—the annual peak typically oc-

curs between April and July.

During the warm season, a large fraction of rainfall,

and nearly all heavy rainfall, in the LPRB is associated

with mesoscale convection (Velasco and Fritsch 1987).

Previous studies of organized convection and pre-

cipitation across subtropical continental South America

have found close correspondence with the exit region of

the low-level jets (Velasco and Fritsch 1987; Marengo

et al. 2004; Saulo et al. 2007; Salio et al. 2007), which is

influenced in both summer and winter by midlatitude

baroclinic wave trains that interact with the Andes to-

pography to generate orographically bound cyclones

and northerly low-level flow (Campetella and Vera

2002; Seluchi et al. 2006; Boers et al. 2013, 2014). The

strength and direction of this moisture transport varies

substantially between events, and SALLJ exit regions

range from central Argentina (Chaco jet events; Salio

2002) to Paraguay and southeastern Brazil (no-Chaco

jet events; Vera et al. 2006).

At subseasonal time scales, heavy rainfall and con-

vection in the LPRB ismodulated by a variety of drivers,

notably including the SACZ and the Madden–Julian

oscillation (MJO). During SACZ conditions, strong

low-level convergence is observed over the Amazon

basin with low-level divergence over southwestern

Brazil, northern Argentina, and Paraguay (Herdies

2002; Carvalho et al. 2011a); the opposite is true for

so-called no-SACZ conditions. SACZ occurrence is

related to westerly wind regimes over southeastern

South America, as well as ‘‘active’’ and ‘‘break’’ periods

of the South American monsoon system (Marengo et al.

2004). The MJO has been associated with the South

American ‘‘seesaw’’ pattern (Nogués-Paegle and Mo

1997; Nogués-Paegle et al. 2000; Liebmann et al. 2004)

and has been identified as a source of rainfall pre-

dictability for the region (e.g., Muñoz et al. 2015).
At seasonal time scales, El Niño–Southern Oscilla-

tion (ENSO) is the dominant driver of convection

variability in the LPRB. During El Niño years, a low-

level anticyclonic anomaly over central Brazil en-

hances occurrence of the low-level jet, favoring the

development of mesoscale convective systems (Velasco

and Fritsch 1987). The intensity and precise extent of

this anomaly is relevant for the impact of ENSO

events. The region also exhibits substantial rainfall

variability between El Niño years, including a reversal

of rainfall anomalies between November of that year

and January of the following one, influenced by land

surface interactions (Grimm 2003; Grimm and Zilli

2009). Even beyond El Niño years, regional land sur-

face feedbacks can cause regions that exhibit wet

anomalies in the spring to experience more summer

precipitation on average (Grimm et al. 2007). Simi-

larly, midlatitude dynamics influence low-level wind

anomalies on many time scales, even though analy-

sis of this relationship is complicated because of cou-

pled tropical–extratropical interactions (Jones and

Carvalho 2002; Carvalho et al. 2004). To address these

potential interactions, a cross-time-scale approach

based on synoptic circulation types is employed here to

diagnose the causes of the rainfall events. This method

has been used in previous work for southeastern South

America (Muñoz et al. 2015, 2016a) and other regions

(Moron et al. 2015).

The paper proceeds as follows. We first describe our

data sources in section 2 and ourmethods in section 3. In

section 4 we start our diagnosis, highlighting the ob-

served flooding and contextualizing it within a long river

stage time series; we then use composites and a weather-

typing analysis to diagnose the circulation patterns as-

sociated with the heavy rainfall during NDJF 2015/16.

We turn in section 5 to the question of whether the

observed rainfall was successfully predicted by available

models. To carry out this analysis, we study both fore-

casts targeting the entire series for a limited area, and

also forecasts targeting a large spatial area for only the

first week of December, when the most important

flooding events began. We also explore the impact on

forecasts of several bias-correction schemes. In section 6

we discuss limitations and potential implications of our

findings and potential future work, and we present our

concluding remarks in section 7.

2. Data

a. Observations

The period analyzed for diagnostic purposes is from

1 November 1979 through 28 February 2016. Figure 1

shows the study area and defines several spatial domains

that are discussed throughout the paper.

Rainfall data are taken from the CPC unified gauge-

based analysis of global daily precipitation dataset

(Chen et al. 2008). Spatial resolution is 0.58 in latitude/

longitude, and temporal resolution is daily. We define

‘‘heavy’’ rainfall events to be exceedances of the 90th

percentile; while the value is different for each grid cell,
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the 90th percentile of area-averaged rainfall over the

LPRB is approximately 15 mmday21.

Atmospheric circulations are diagnosed using

daily data from the NCEP–DOE AMIP-II reanalysis

dataset (Kanamitsu et al. 2002). Spatial resolution is

2.58. Because the end-of-day time for the rainfall data is

1200 UTC over most of South America (Chen et al.

2008), we use 6-h reanalysis data and shift by 12 h be-

fore resampling to the daily time step. This ensures that

the time steps in the reanalysis and rainfall datasets are

the same, but means that a day is defined as beginning

at 1200 UTC. Since most summer rainfall in this region

occurs overnight (Vera et al. 2006; Salio et al. 2007), this

end-of-day time (which translates to approximately 0800

LT, depending on the exact time zone) tends to sepa-

rate distinct events. The primary atmospheric variable

used was the 850-hPa streamfunction, calculated di-

rectly from the wind field as described in section 3. The

streamfunction is preferable to, for example, the geo-

potential height F because F has weak gradients near

the equator, making it difficult to visualize circulations

that span from the tropics to the extratropics. Data at

850 hPa was used because it is representative of SALLJ

activity and moisture transport in this region (Marengo

et al. 2004; Salio et al. 2007).

Oceanic sea surface temperature (SST) patterns are

explored at the monthly time step using the 18 NOAA

OISST version 2 dataset (Reynolds et al. 2002).

Streamflow data were collected by the Paraguayan

Navy and National Administration of Navigation and

Ports of Paraguay andwere processed and distributed by

the Paraguayan Directorate of Meteorology and Hy-

drology. Locations of streamflow gauges are shown in

Fig. 1. Because no stage-discharge curves are available,

we present only the river stage values; while this is rel-

evant from the perspective of flood damage, flow rates

cannot be estimated without these curves (which are

difficult to reconstruct as river geometry changes

over time).

This study also makes use of some climate indices.

Data on ENSO, specifically the Niño-3.4 index, came

from a statistical–dynamical interpolation (Kaplan et al.

1998), which is constrained by relatively high-quality

observations during the study period. Data on the MJO

came from the Australian Bureau of Meteorology

(Wheeler and Hendon 2004).

b. Model forecasts

This study analyzes probabilistic seasonal and sub-

seasonal forecasts of heavy rainfall events, which we

define as exceedance of the 90th percentile of NDJF

daily precipitation across all ensemble members and

initializations.

The seasonal predictions used are known as ‘‘flexible

format’’ forecasts, provided by the International Re-

search Institute for Climate and Society (IRI). These

forecasts use a multimodel ensemble approach, with

bias-corrected retrospective probabilistic forecasts pro-

duced using a total of 144 members forced by evolving

SSTs and 68 members forced by persisted SSTs; for

details, see Barnston et al. (2010). Flexible formatmeans

that the user of these forecasts can arbitrarily choose

particular thresholds (percentiles) to compute the

probability of exceedance (or nonexceedance) from the

complete probability density function of the climato-

logical distribution, rather than using the more common

tercile categories. The DJF 2015/16 forecasts analyzed

were produced in November 2015. Because of the short

sample of flexible format forecasts available (only for

2012–16 at the time of writing this paper), no verification

was performed for these seasonal predictions. These

forecasts are provided at a horizontal resolution of 2.58.
The DJF 2015/16 forecasts analyzed were produced in

November 2015.

The subseasonal forecasts used were issued by the

European Centre for Medium-Range Weather Fore-

casts (ECMWF) using the IFS cycle 41r1 coupledmodel.

These forecasts are available via the Subseasonal to

Seasonal (S2S) Prediction Project Database (Vitart

et al. 2017) at 1.58 resolution. Forecasts consider the

period starting in December 2015 until March 2016, and

hindcasts to assess the real-time predictive skill consider

the period 1–7December in 1995–2014. There are a total

of 51 ensemble members for each forecast, and 11 en-

semble members for each of the 20 hindcasts.

Hindcasts were used to define the significant event

threshold and for probabilistic forecast verification;

forecasts were used to analyze modeled rainfall during

the entire NDJF 2015/16 season and in particular the

week of 1–7 December 2015. For probabilistic analysis

of the rainfall during the week of 1–7 December 2015,

rainfall forecasts and hindcasts considered were initial-

ized on 12 and 16 November 2015.

Anomalies were calculated relative to the seasonal

mean from November 1979 to February 2016, and the

anomalies thus contain information on intraseasonal

variability.

3. Methods

Several types of analyses are used to diagnose the

causes of the heavy rainfall events and to bias-correct

and verify the forecasts. Computation was performed in

the Python environment using stable open-source

packages (Hunter 2007; McKinney 2010; van der Walt

et al. 2011; Hoyer and Hamman 2017). [All codes to
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reproduce or modify this analysis are available online at

https://github.com/jdossgollin/PYFloods (maintained) and

https://doi.org/10.5281/zenodo.1294280 (permanent)].

Given the behavior of the Paraguay River discussed

above, we define the lower Paraguay River basin as the

region bounded from 59.758 to 55.758W and from 26.758
to 22.758S, as shown in Fig. 1. In this region, given to-

pography and previous studies (Barros et al. 2004; Bravo

et al. 2011), one might hypothesize rainfall inputs to

most closely correspond to river levels at the stream

gauges in Fig. 1.

a. Weather typing

A cluster algorithm is used on daily data to diagnose

mechanisms associated with the rainfall events of in-

terest in this research. The clustering was performed on

the daily NDJF 850-hPa streamfunction field c850 cal-

culated by integrating the meridional and zonal wind

fields using spherical harmonics, as implemented in the

windspharm package (Dawson 2016), over the domain

spanning from 158to 308S and from 658to 458W (Fig. 1).

To facilitate clustering (which tends to perform poorly

in high-dimensional spaces), the NDJF anomaly field of

c850 was projected onto its four leading empirical orthog-

onal functions (EOFs), accounting for .95% of the total

observed variance. No meridional weighting was applied

as the selected domain is relatively small and does not

extend into high latitudes.Once theEOFswere calculated,

the principal component time series were computed for

each day and scaled to unit variance. This rescaling is not a

necessary step; its effect is to treat all retained principal

components as equally important, which provides rela-

tively greater weight to EOF2, EOF3, and EOF4 than

carrying out the clustering without rescaling. Although our

approach of first selecting the number of EOFs to use and

then choosing to scale them equally involves more sub-

jective decisions than an approachwithout rescaling, in this

case the resulting physical patterns described by the EOFs

more closely represent patterns identified in the literature;

this is further discussed in section 4.

Next, the K-means algorithm was used to assign a

single cluster value to each day on record using the four-

dimensional principal component time series. TheK-means

technique is a partitioning method that classifies all days

in the study into a predefined number of clusters. The

algorithm proceeds as follows:

1) Randomly choose K cluster centers m
(0)
1 , . . . , m

(0)
K

(where 0 refers to the 0th iteration).

2) Iterate until convergence, indexing each iteration

with j:

(i) Assign each observation xi (day) to the nearest

cluster center; we define this using the Euclidean

distance but other measures, such as the Mahala-

nobis distance, could also be used:

m
( j11)
i :5 arg min

k21,...,K
kx

i
2m

(j)
k k . (1)

(ii) Recompute the cluster centers as themean of all

points assigned to that cluster

m
( j11)
k :5

1

jfijm( j11)
i 5kgj �

ijm(j11)
i

5k

x
i
, (2)

where j�j denotes vector length.
(iii) Stop iteration if the change in centroids

m( j11) 2m( j) is less than a small but nonzero

tolerance parameter t.

The cluster centroids mk produced by the K-means al-

gorithm can then be interpreted as a Voronoi de-

composition of the phase space into K regions, and

specifically as the Voronoi diagram, which minimizes

within-cluster variance.

The K-means algorithm is guaranteed to converge

to a local minimum of intercluster variance; to select

the best partition, 500 simulations were created using

the implementation in Python’s scikit-learn package

(Pedregosa et al. 2011). Next, the classifiability index of

Michelangeli et al. (1995) was computed between each

partition and the 499 others. The partition whose clas-

sifiability index, averaged for all 499 pairwise compari-

sons, was the highest was selected. Calculation of the

classifiability index for several values ofK (Fig. S2 in the

supplemental material) suggests that states with K 5 5,

6, . . . , 8 are all reasonable. We chose the solutionK5 6

because the clusters identified are qualitatively similar

to those determined over southeastern South America

(Muñoz et al. 2015, 2016a) and have an intuitive physical
meaning, which we discuss further in the following sec-

tions. We refer to the resulting clusters as weather types

(WTs). From a physical point of view, the K-means al-

gorithm helps identify typical atmospheric circulation

patterns in the EOF-filtered field via clustering of days

with similar streamfunction configurations. These clus-

ters can also be understood as proxies of the available

states of the system, or the most frequently visited tra-

jectories in the phase space of the physical system

(Muñoz et al. 2015, 2016b, 2017).

b. Forecasts and model output statistics

A wide variety of methods, generically known as

model output statistics (MOS) (Glahn and Lowry 1972),

have been proposed to correct for different types of bias

in model output. In this work, we analyze how well the

rainfall events could have been predicted, using both the
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raw subseasonal forecasts and MOS-adjusted sub-

seasonal forecasts. We use four types of MOS tech-

niques: homoscedastic extended logistic regression

(XLR), heteroscedastic extended logistic regression

(HXLR), principal components regression (PCR), and

canonical correlation analysis (CCA).

Logistic regression models the probability of binary

events, conditional on one or more predictors, and has

been widely used in MOS. Nonetheless, when using

logistic regression to address multiple thresholds via

independent fits, the predicted probabilities are, in

general, not mutually consistent (Messner et al. 2014).

XLR was designed to address this shortcoming via the

consideration of a transformation of the thresholds of

interest as an additional predictor variable (Wilks 2009).

HXLR, a generalization of the XLR, was proposed to

appropriately use the ensemble spread as predictor for

the dispersion of the predictive distribution (Messner

et al. 2014).

CCA is a common statistical method frequently used

to forecast rainfall using a purely empirical approach

(Mason and Baddour 2008; Barnston et al. 2012; Jolliffe

and Stephenson 2012; Barnston and Ropelewski 1992;

Wilks 2006). CCA identifies modes of covariability,

called canonical variates or canonical modes, by maxi-

mizing the correlation between linear combinations of

the predictor and predictand’s EOF. The method fore-

casts spatial patterns of variability spanning across the

region of interest rather than making forecasts for in-

dividual locations. In PCR, a special case of CCA, each

grid cell in the predictand field is estimated by regression

using a linear combination of the predictor’s EOFs

(Mason and Baddour 2008; Wilks 2006) rather than by

identifying canonical modes. Unlike XLR and HXLR

models, which perform bias correction independently

for each grid cell, CCA and PCR models can address

biases in both the magnitude and the spatial distribution

of the modeled precipitation patterns.

For the purposes of MOS corrections, the pre-

dictand (variable to be forecast) is the observed

rainfall for the target period of interest, and the

predictor (variable to be corrected) is the uncorrected

S2S model forecast rainfall for the same period.

Exceedance of the 90th percentile during the 1995–

2014 period is used to define the heavy event cases.

We use the same spatial domain (398–178S, 668–498W)

for both the predictor and the predictand, except for

the PCR and CCA cases, in which a larger domain

(08–608S, 808–308W) was used to better capture the

spatial patterns in the uncorrected S2S model forecast

field. A variety of domains and ways to combine ini-

tialization times were explored; the best results were

selected in terms of the corresponding Kendall’s t rank

correlation coefficient between observations and hind-

casts. A summary of the final candidate predictors found

to be most skillful for each MOS model is presented in

Table 1.

To evaluate model skill, we use a cross-validation

approach with a 5-yr window. In this framework, five

continuous years are left out of the record, the re-

gression coefficients are computed with the remaining

time series, and the resulting model is validated com-

paring the prediction for the third year left out (middle

of the window) against observations. The 5-yr-long

window is redefined a year at a time, moving from the

beginning of the record to its end.

To visualize the probability of heavy rainfall at each

grid cell, we present all predictions in terms of odds

relative to the climatological odds:

odds
r
[

p

(12 p)

(12 p
c
)

p
c

, (3)

where p and pc represent the forecast probability for the

exceedance of the 90th percentile and the related cli-

matological probability, respectively.

As indicated earlier, the IRI’s seasonal forecasts are

already provided with spatial MOS corrections of

systematic errors of the individual models in the en-

semble via CCA (Barnston et al. 2010), and thus we

did not perform any further MOS on the seasonal

rainfall fields.

TABLE 1. MOS methods used to correct the ECMWF subseasonal forecasts. Spatial domain for predictand is always the same (398–178S,
668–498W). Two initializations are used: 12 and 16 Nov 2015.

Model Region (predictor) Final predictor(s) selected

Raw 398–178S, 668–498W Ensemble mean, computed using members from the two initializations. No correction

performed.

XLR 398–178S, 668–498W Ensemble mean, computed using members from the two initializations.

HLXR 398–178S, 668–498W Ensemble mean and spread, computed using members from the two initializations.

PCR 608S–08, 808–308W Linear combination of model’s EOFs computed using both initializations as independent

predictors (10 EOFs).

CCA 608S–08, 808–308W Canonical modes computed using both initializations as independent predictors (10 predictor

and 4 predictand EOFs, 4 canonical modes).
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c. Probabilistic forecast verification

In addition to visually comparing predictions and

observations to verify how well the heavy rainfall events

could have been predicted, we use the ignorance score:

IGN[2log
2
p(Y) , (4)

whereY is the observed outcome and p(Y) is the density

function of the forecast distribution (Good 1952;

Roulston and Smith 2002; Bröcker and Smith 2007). The

ignorance score was introduced as an information-

theory-based verificationmeasure, decomposable into

easily interpretable components: reliability, resolu-

tion, and uncertainty (Weijs et al. 2010). Because of its

close relationship to Shannon’s information entropy,

it is used to measure forecast utility, or the amount of

information gain expected from a forecast (Roulston

and Smith 2002).

We also compute the generalized relative operating

characteristics score, also known as the two-alternative

forced choice (2AFC) score (Mason and Weigel 2009),

to evaluate skill of probabilistic rainfall forecasts. This

score measures the proportion of all available pairs of

observations of differing category whose probability

forecasts are discriminated in the correct direction

(Mason and Weigel 2009). It has an intuitive in-

terpretation as an indication of how often the forecasts

are correct.

These two metrics, measuring reliability, resolution,

uncertainty, and discrimination, are deemed here to be

sufficient to characterize the forecast skill for our events

of interest. To conduct the verification in a consistent

manner, we use the climate predictability tool, de-

veloped and maintained by the IRI (Mason and

Tippett 2017).

4. Diagnostics

a. Observed flooding

Figure 3 shows the streamflow time series at several

gauges on the Paraguay River during NDJF 2015/16 in

the context of their seasonality and decadal variabil-

ity. During November and December 2015, the river

rose rapidly at Concepción, Asunción, and Pilar, al-

though not at Bahía Negra. As discussed in Barros

et al. (2004) and Bravo et al. (2011), the location of the

Bahía Negra gauge (see Fig. 1) in the Pantanal region

means that it responds very slowly to rainfall input.

The three downstream gauges, because they are lo-

cated in the LPRB, respond to the rainfall forcing

with a slow but steady rise. Despite several very heavy

storms, the streamflow record at Asunción and Pilar

(which are downstream of Concepción) indicates rel-
atively little response to individual storms. Because

the region is so flat (see topographic data in Fig. 1),

river levels at a particular point may be affected not

only by rain in the catchment corresponding to that

point, but also by elevated river levels downstream

that reduce the pressure gradient available to drive

flow.

FIG. 3. River stage (height; m) for the Paraguay River at four gauges along the Paraguay River. The station names are those shown in

Fig. 1. (a) Seasonality (orange) and time series of 2015/16 observations (black) at each stream gauge. Seasonality was fit using local

polynomial regression as implemented in the locfit package in the R statistical programming environment (Loader 1999). (b) Time series

of daily stage measurements from 1929 to 2016 at each station.
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Examination of Fig. 3b suggests multidecadal oscil-

lation in the streamflow record. This is in agreement

with previous studies (Collischonn et al. 2001; Carvalho

et al. 2011b) that find a changepoint in the 1970s, pos-

sibly associated with low-frequency Pacific variability.

Because only river stage data (and not discharge) are

available, it is not possible to discern whether the ob-

served changes in river stage are driven by sediment

loading and local measurement characteristics or by

large-scale climate fluctuations. Further treatment of

this question is beyond the scope of this paper.

b. Heavy rainfall: Climatological drivers

To understand how circulation anomalies observed

during NDJF 2015/16 led to the observed floods, it is

helpful to first explore the atmospheric circulations that

are typically associated with heavy rainfall in the lower

Paraguay River in the full observed record.

Figure 4 shows time-lagged anomalies up to and after

heavy rainfall dates (when area-averaged daily rainfall in

the LPRB exceeds its NDJF 90th percentile) and is con-

sistent with previous analysis of heavy rainfall and intense

convection in this region (Liebmann et al. 2004; Marengo

et al. 2004; Salio et al. 2007; Marwan and Kurths 2015). At

t 5 22 days a midlatitude baroclinic system approaches

the South American continent, intensifying andmoving to

the east from 21 to 1 day. This system interacts with the

subtropical low and the Andes to produce an anticyclonic

anomaly over Brazil. Along this system’s cold front, a low-

level northerly jet advects heat and moisture to the

region. As the system progresses, the jet below 208S
transitions from predominantly meridional flow (Chaco

jet; t5 21 day) to predominantly zonal flow (no-Chaco

jet; t 5 0 day). The pattern resembles composites iden-

tified using one standard deviation exceedances of

rainfall at 308S, 608W (Liebmann et al. 2004), and

analysis for the 95th or 99th percentiles of daily rainfall

(not shown) yield similar results, implying that the

synoptic mechanism for the heaviest events is not fun-

damentally distinct from the mechanism for moderate-

intensity events. This mean field, like all composites,

masks between-event variation, but exploration of in-

dividual events (not shown) indicates that the core fea-

tures identified are generally present.

c. Weather type analysis: Daily circulation patterns

We next use the weather-typing algorithm outlined in

section 3a to understand particular circulations and se-

quences of circulations associated with heavy rainfall in

the LPRB.

The first step of the weather-typing algorithm is to

identify leading EOFs of the 850-hPa streamfunction.

The EOF loadings are shown in Fig. 5. Of these, EOF1

explains a substantial amount of variance (;72%) while

EOF2, EOF3, and EOF4 collectively explain approxi-

mately 27% of total variance. The resultingWTs, shown

in Fig. 6, reveal patterns associated with synoptic- and

regional-scale circulation regimes. This is consistent

with the hypothesis that the EOFs of c850 over the study

area are associated with large-scale patterns.

WT 1 describes a SALLJ event in which the strongest

wind penetrates southward of 258S, leading to heavy

rainfall over northeastern Argentina and Uruguay; this

has been called a Chaco jet event (Salio 2002).WT 4 also

shows SALLJ activity, but the wind turns to the east

northward of 258S, leading to heavy rainfall over eastern

Paraguay and southwestern Brazil; this has been called a

no-Chaco jet event (Vera et al. 2006). Table S1 in the

supplemental material shows the centroids of each

cluster, in the four-dimensional phase space of the

leading EOFs of 850-hPa streamfunction.

WTs 5 and 3 look to be nearly inverses ofWTs 1 and 4,

respectively, and are associated with dry anomalies over

the LPRB. The fact that they are not exact inverses

FIG. 4. Composite anomalies associated with heavy rainfall (90th percentile exceedance of area-averaged rainfall in the LPRB). Lagged

composites are shown, for t5 (a),(e)22, (b),(f)21, (c),(g) 0, and (d),(h) 1 day relative to the date of heavy rainfall. (top) Composite c850

(shading) and wind anomalies at 850 hPa (vectors), with the strongest 5% of wind anomaly vectors between 608S and 108N (all longitudes)

are also shown, and (bottom) composite rainfall anomalies (mmday21).
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suggest important nonlinearities in the system. Weather

types 1 and 5 resemble the two phases of the South

American seesaw dipole, which is related to the SACZ

(Nogués-Paegle and Mo 1997). Finally, WTs 2 and 6 are

related to a high-pressure configuration bringing below-

average rainfall over most of Brazil, and a dipole pattern

conducive to above-average rainfall over central Brazil,

respectively (Fig. 6).

d. NDJF 2015/16: Circulation sequences

We next use monthly-mean circulation anomalies (spa-

tial patterns) and weather type sequences (temporal pat-

terns) to understand the specific events of NDJF 2015/16.

While weather typing requires simplifying the dy-

namics of daily circulation patterns, its advantage is that

it greatly facilitates the analysis of sequences of pre-

cipitation. Figure 7 shows a time series of area-averaged

rainfall over the LPRB for NDJF 2015/16 and the cor-

responding weather types. This plot shows that heavy

rainfall concentrated over a period spanning from mid-

November 2015 through early January 2016, with

shorter peaks in late January and mid-February.

As indicated in Fig. 7, the heaviest rainfall occurred

during WTs 1 and 4. During NDJF 2015/16, WTs 1 and

4 (Chaco and no-Chaco jet extensions, respectively),

occurred more frequently than their climatology (Table

S2 in the supplemental material); WT 2 also occurred

more frequently than its climatology, largely due to a

long sequence in February 2016. In mid-January 2016,

during a sequence of persistent low rainfall, multiple

consecutive days of WT 3 were observed, leading to

heavy rainfall over central Brazil (not shown) and dry

conditions over the LPRB. Thus, while the intensity and

persistence of heavy rainfall was atypical, the causal

mechanism of the heavy rainfall observed during this

season was consistent with climatology.

Inspection of Fig. 7 also suggests that at time scales of

days toweeks, particular sequences of weather types tend

to recur and are associated with repeated rainfall storms.

From mid-November to late December 2015, nearly all

days were weather types 1, 4, and 5, consistent with the

anticyclonic anomaly observed over central Brazil during

that time (Fig. 2). Nearly all of the heavy rainfall occurred

during WTs 1 and 4. During mid-to-late January 2016,

repeated WT 3 days led to persistent low rainfall, and in

mid-February 2016 frequent occurrence of WT 2 led to

frequent, although generally not intense, rainfall.

Transitioning from exploring the time evolution of the

reduced-dimension system represented by the weather

types, monthly-scale circulation anomalies (Fig. 2) show

a weak anticyclonic circulation that set up over central

Brazil during November 2015 and strengthened into the

FIG. 5. Loadings of the four leading EOFs of daily NDJF c850 over the weather-typing region shown in Fig. 1. Parentheses in panel titles

indicate the percentage of total variance explained by each EOF.

FIG. 6. Composite anomalies associated with eachWT, for (a)–(f) c850 and wind anomalies at 850 hPa (vectors), with the strongest 20%

of wind anomaly vectors over the plot area are also shown, and (g)–(l) rainfall anomalies (mmday21). The relative frequency of oc-

currence of each WT (in % of days) is presented above (a)–(f).
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following month. In January 2016 it weakened before

returning in February 2016. The observed rainfall and

circulation anomalies are consistent with the aggrega-

tion of the observed weather types shown in Fig. 7 and

discussed above.

5. Forecasts

In this section we analyze the extent to which forecasts

were able to predict the persistent rainfall during sum-

mer of 2015/16. There are advantages in simultaneously

considering useful climate information at multiple time

scales, rather than just focusing on one of them (Hellmuth

et al. 2011; Goddard et al. 2014). In this study we analyze

probabilistic seasonal (DJF 2015/16) and subseasonal

(1–7 December 2015) forecasts.

a. Seasonal forecast

Heavy rainfall over the region was forecast for the DJF

2015/16 season since at least November 2015 (see Fig. 8).

Relative odds as high as 9: 1 are visible over southern

Paraguay and Brazil and northern Uruguay and Argen-

tina, broadly in agreement with observations. The model

predicted only very weakly increased odds of heavy rain-

fall in the Pantanal region (directly north of the LPRB)

and northern Argentina at about 658W and missed the

heavy precipitation along most of the northeastern border

of Paraguay. However, the regionally elevated forecast of

heavy rainfall could have been used for disaster pre-

paredness at least one month in advance, consistent with

the El Niño signal.

b. Subseasonal forecasts

Subseasonal predictions are still too new to be used as

operational tools, and their skill is normally not high

enough to be useful for most decision-making (Vigaud

et al. 2017). Nonetheless, the international S2S Pre-

diction Project (Vitart et al. 2017) provides free access to

almost-real-time subseasonal forecasts from multiple

models, an opportunity to explore how well the heavy

rainfall events of the first week of December 2015 could

have been predicted.

Figure 9 (top) uses a Chiclet diagram (Carbin et al.

2016) to visualize, as a function of lead time, the time

evolution of the uncorrected, ensemble-mean rainfall

anomaly forecast, spatially averaged over the LPRB. At

FIG. 7. Time series of area-averaged rainfall in the LPRB (see Fig. 1) for each day of NDJF

2015/16. Lines indicate the rainfall value (mmday21). The WT corresponding to each day is

indicated by the adjacent text label. The horizontal dashed blue lines indicate, from bottom to

top, the climatological 50th, 90th, and 99th percentiles, respectively, of NDJF area-averaged

rain over the LPRB.

FIG. 8. Seasonal model forecast for probability of exceedance of

90th percentile of DJF rainfall, as issued in November 2015. Color

indicates the forecast probability of exceeding the 90th percentile

of climatological rainfall during DJF 2015/16—this is presented as

oddsr defined in Eq. (3). A value greater than 1 indicates that the

model forecast greater-than-average odds of rainfall exceeding the

90th percentile. Grid cells that observed an exceedance of the 90th

percentile of DJF rainfall are outlined in black.

6678 JOURNAL OF CL IMATE VOLUME 31

Brought to you by NOAA Central Library | Unauthenticated | Downloaded 10/05/21 05:25 PM UTC



times greater than about 2 weeks, the ensemble-mean

forecast is for slightly positive rainfall anomalies at nearly

all initialization dates and lead times. At weather time

scales (less than 1 week), the ensemble mean successfully

predicts the timing and amplitude of the area-averaged

rainfall. At time scales of 1–3 weeks, the ensemble average

successfully forecast the strongest breaks and pauses in the

rainfall, such as the heavy rainfall during December 2015

and the dry period during mid-January 2016.

To examine these forecasts more closely, we turn to the

14–19-day forecast of the 1–7 December 2015 period. As

seen inFig. 10, the raw (uncorrected) subseasonal forecast of

the ECMWF model for 1–7 December 2015 indicated very

high relative odds for occurrence of heavy rainfall but with

important biases in the actual location and spatial pattern;

for Paraguay, it confidently suggests occurrence of heavy

rainfall to the south-southeast of the country, which was

mostly not observed. Overall, the 20-yr skill of probabilistic

forecasts for the first week of December is highest over

southern Brazil, parts of Argentina, and the western border

of the domain under study (see Figs. 10f,k), but not over

Paraguay. These skill scores indicate that the model is

capturing a signal and suggest the use of MOS methods to

explore the extent to which corrections in the magnitudes

and spatial patterns may improve the forecast.

In general, the use of extended logistic regressionmodels

does not improve the forecast for the week. For example,

with respect to the raw prediction, XLR tends to amplify

the relative odds and to cluster and shift the forecast lo-

cation of the heavy rainfall events (Figs. 10a,b); the forecast

tends to be better for Uruguay, but suggests heavy rainfall

in the Paraguayan Chaco, which was not present in the raw

prediction. On the other hand, the use of the ensemble

spread in the HXLR model does not help; this forecast

tends to be overconfident on the events occurring in almost

all the regions of interest (Fig. 10c).

Comparison of long-term skill between the un-

corrected S2S model forecast output and both extended

logistic regression models shows similar results. Re-

liability, resolution, and uncertainty, as measured by the

ignorance score (Figs. 10f–h), suggests slight skill im-

provement in southern Brazil, deterioration in Argentina

and Uruguay, and basically the same as the uncorrected

S2S model forecast for Paraguay and southeastern Bo-

livia. Changes in forecast discrimination exhibited by the

extended logistic models, as measured via the 2AFC

score (Figs. 10k–m), are null. The extended logistic

models operate on a gridbox-by-gridbox basis to recali-

brate the probabilities, and so this recalibration happens

monotonically. Since the 2AFC score is insensitive to

monotonic transformations of forecasts, the forecast

discrimination is unchanged.

Better forecasts are obtained when both magnitude

and spatial corrections are performed, although with

relative odds considerably less confident than the ones in

the raw forecast. The PCR model correctly shows high

relative odds in most of the places where heavy rainfall

was observed (Fig. 10d), although it also indicates

heightened risk in areas where heavy rainfall did not

occur, like zones of western Paraguay and northeastern

Argentina. The main problem with the CCAmodel is its

lack of discrimination between occurrence or non-

occurrence of heavy rainfall in the region: the spatial

distribution of odds is too homogeneous (Fig. 10e).

The 20-yr-based skill maps of probabilistic fore-

casts computed with these two EOF-based models are

very similar to each other, both in terms of the re-

liability, resolution, and uncertainty measured by the

ignorance score and the discrimination measured by

the 2AFC score (Figs. 10i,j,n,o). In terms of long-term

skill for the regions of interest over Paraguay, out-

put from the PCR- and CCA-based MOS tend to

FIG. 9. (top) Chiclet diagram (see Carbin et al. 2016) of ensemble-mean precipitation

anomaly forecasts over the LPRB (see Fig. 1) from uncorrected ECMWF S2Smodel forecast

data, as a function of the forecast target date (horizontal axis) and lead time (vertical axis).

(bottom) Time series of CPC daily mean precipitation over the same area is plotted with y

axis inverted; horizontal black line denotes NDJF climatology.
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outperform the raw forecasts and the extended logis-

tic regression models, especially regarding discrimina-

tion (Figs. 10k–o). The enhanced skill is achieved

through spatial corrections via the EOF-based regres-

sions, which—in contrast with the extended logistic

models—use information from multiple grid boxes, and

thus the original forecasts are not necessarily calibrated

monotonically.

Despite the particular errors in the 1–7 December

2015 forecasts, on the long term both PCR and CCA

verify considerably better than the raw, XLR, and

HXLR predictions. Yet despite the generally high skill

score for these forecasts, there are still zones along the

eastern part of Paraguay with lower discrimination skill

than that of climatology.

6. Discussion

Co-occurrence of WTs 1 and 4, particularly in late

November through late December 2015, favored

advection of moisture and moist static energy into the

LPRB, and low-level wind shear favored mesoscale

convective activity, consistent with previous analyses in

this region (Velasco and Fritsch 1987; Marengo et al.

2004; Saulo et al. 2007; Salio et al. 2007). Althoughmany

of the individual rainfall events of NDJF 2015/16 were

intense, they were nonetheless driven by the climato-

logical mechanism for heavy rainfall and intense con-

vection shown in Fig. 4 rather than by some other

extreme mechanism. Consequently, the most striking

hydrometeorological feature of this season, likely a key

driver of the observed flooding, was the persistence of

the heavy rainfall and the manner in which it switched

‘‘on’’ and ‘‘off’’ over the study region (Fig. 7). In fact,

this apparent on and off switching was manifest princi-

pally as a spatial shift in the rainfall occurrence (Fig. 2)

consistent with the increased occurrence ofWT 3 during

mid-to-late January 2016 (Figs. 6 and 7); this pattern has

been previously described as the South American see-

saw pattern (Nogués-Paegle and Mo 1997).

FIG. 10. Raw and MOS-adjusted S2S model forecasts and skill scores for the methods indicated in Table 1. (a)–(e) The heavy rainfall

forecast for 1–7 Dec 2015 as oddsr defined in Eq. (3) over the target domain. A value greater than 1 indicates that the model forecast

greater-than-average odds of rainfall exceeding the 90th percentile. (f)–(j) The IGN defined in Eq. (4), with zero indicating a perfect

forecast. (k)–(o) The 2AFC skill score for each grid cell; a value greater than 50 indicates that the model outperforms climatology.

Different MOS models except for Raw in (a),(f),(k), which indicates the uncorrected S2S model output. In (top)–(bottom), the grid cells

that observed a 90th percentile exceedance for 1–7 Dec 2015 are outlined in black.
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Although many news reports blamed the flooding on

El Niño (British Broadcasting Corporation 2015), NDJF

2015/16 featured more intense rainfall than previous

major El Niño events, and this intense rainfall persisted

for a longer time. While the link between El Niño and

flooding in the LPRB is consistent with previous studies

of ENSO and summertime rainfall in this region (Velasco

and Fritsch 1987; Grimm et al. 2000; Salio 2002; Grimm

2003; Carvalho et al. 2004; Grimm and Tedeschi 2009;

Bravo et al. 2011), both the on and off switching and the

differences from previous major El Niño events suggest

that other physical mechanisms, and their cross-time-scale

interactions, are relevant for understanding and pre-

dicting future events.

Figure 11 shows that WT 1 occurs more frequently

during El Niño years for most MJO phases, particularly

during phase 2. During El Niño years,WT 3—associated

with dryness over the LPRB—occurs less frequently

during MJO phases 4, 6, and 7 and more often during

MJO phase 8; this is consistent with the lack of WT 3

during December 2015 and the frequent WT 3 occur-

rence in mid-January 2016 (Fig. 7). Detailed consider-

ation of the role of MJO–ENSO interaction with

circulation patterns over the study region is beyond the

scope of this paper, but these two patterns provided

background conditions favorable for the weather type

sequences observed during NDJF 2015/16.

Through analysis of the relationship between relevant

physical mechanisms and the occurrence probability of

the identified weather types, it may be possible to better

understand the drivers of this and future extreme event

(s). As a starting point, we consider the joint role of

ENSO, discussed above, and the MJO. During NDJF

2015/16, the Niño-3.4 index was strongly positive,

representing a strong El Niño state (Figs. S3 and S4 in

the supplemental material). The MJO began in No-

vember 2015 in a strong phase 3 and transitioned to

phase 4 before losing amplitude around 21 November

(Fig. S5). It stayed neutral until early December, where

the MJO strengthened from a weak phase 4 to a strong

phase 4 ten days later. Maintaining a high amplitude, the

MJO transitioned through phases 4–8 and reached

phase 1 in mid-January 2016. The MJO then weakened

slightly before emerging as a midstrength phase 4 event

in late January 2016 and moving through phases 5–7.

Of course, since a large fraction of the signal in Fig. 11

seems to come from theENSO signal, a logical question is

why NDJF 2015/16 featured more persistent and intense

rainfall in the LPRB than during other major El Niño
events (Fig. S4). Previous studies of the SALLJ (e.g.,

Vera et al. 2006) and the modulation of rainfall in

southeastern South America by extratropical transient

wave trains during El Niño years emphasize the impor-

tance of Pacific–Atlantic interaction for forecasting cli-

mate events in this (and other) region(s) (Barreiro 2017).

In particular, a persistent dipolar SST anomaly in the

central southern Atlantic Ocean may favor the occur-

rence of WT 4 by blocking transient extratropical wave

activity from the Pacific, facilitating transitions from

Chaco jet events (WT 1) to no-Chaco jet events (WT 4)

via enhanced low-level wind circulation from southern

Brazil toward the Atlantic, and back to northeastern

Brazil and the Amazon (see Fig. 12), because of land–

sea temperature contrasts. We illustrate a schematic of

FIG. 11. Anomalous probability of occurrence of eachWT concurrent with observance of eachMJOphase.WhenMJO amplitude is less

than 1, it is defined as neutral phase (0). Plots are shown separately for (left)–(right) LaNiña (Niño-3.4,21), neutral ENSO, and El Niño
(Niño-3.4 . 1) phases. Only values that are significant at a 5 0.10, calculated with a bootstrap of 5000 samples, are shown.
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this mechanism in Fig. 12 and note that it is consistent

with the mechanism found to produce heavy rainfall in

the LPRB (Fig. 4) and with previous studies (e.g., Salio

2002; Liebmann et al. 2004; Vera et al. 2006). We refer

to this mechanism as the south central Atlantic dipole

(SCAD) and measure it as the mean meridional SST

gradient over the box shown in Fig. 12. Examination of

the SST anomalies observed during NDJF 2015/16

(Fig. S4) indicates that the mechanism illustrated in

Fig. 12 was active, particularly in December 2015 when

the most intense rainfall occurred. This suggests that

not only did ENSO–MJO conditions favor SALLJ ac-

tivity, but Atlantic–Pacific interactions specifically fa-

vored WT 4 occurrence, helping to explain why the

most intense rainfall anomalies occurred specifically in

the LPRB.

This Atlantic–Pacific interaction may also help to ex-

plain spatial uncertainty in model-based estimates of

heavy rainfall in the region. To adequately forecast

rainfall in certain parts of southeastern South America

duringElNiño years, models need to reproduce stationary

wave trains originating in the Pacific and the Atlantic and

their interactions (Barreiro 2017). Other mechanisms that

have been known tomodulate rainfall signals in this region

include the SACZ (Carvalho et al. 2004;Muñoz et al. 2015,
2016a) and land–biosphere–atmosphere interactions

(Grimm et al. 2000, 2007), which also tend to be poorly

represented in models (Koster 2004; Green et al. 2017).

The stationary wave train interactions, land–atmosphere

interactions, and topography may explain why simulat-

ing heavy rainfall in this region is so difficult (Figs. 9 and

10). Improving understanding of these phenomena is an

important opportunity for S2S prediction and is left for

future work.

Finally, it is of interest to consider the link between the

observed rainfall events and the observed flooding. Al-

though we motivated this work by describing the impacts

of severe flooding in the LPRB, the analysis presented has

focused on climate drivers of rainfall. As explained in

section 4a, in this region the flat topography (Fig. 1)means

that the lower Paraguay River reacts slowly to rainfall

(Bravo et al. 2011; Barros et al. 2004), explaining the slow

but steady rise in river levels from mid-November 2015 to

early January 2016, as shown in Fig. 3. The observed flood

peaks during 2015/16 also seem to occur in the context of

an active phase of a multidecadal oscillation, possibly as-

sociated with low-frequency Pacific activity (Collischonn

et al. 2001; Huang et al. 2005). Groundwater dynamics are

also important in explaining this behavior (Santos and

Lima 2016). Parsing the relative impacts of deforestation

and land use changes in the river basin, installation of

hydroelectric generation at the Itaipu and Yacyreta Dam

sites, river channel modification, antecedent conditions,

and climate variability on flood levels will require gath-

ering improved hydrological data and building a compre-

hensive system model, which is beyond the scope of

this paper.

From a policy perspective, reducing flood risk expo-

sure in this region is key to reducing flood losses. Flood

events not only in 2015/16 but also in 2014, 2017, and

2018 have caused substantial damage and highlight the

need for flood risk management strategies. Doing so will

require compiling information on the properties, busi-

nesses, and infrastructure that are vulnerable to flood-

ing. This study also suggests that proposed dredging of

the upper Paraguay River basin to facilitate navigation

could lead to increased summertime streamflow from

the upper Paraguay River basin (Pantanal), effectively

FIG. 12. Schematics of low-level jet events (red arrows) during austral summer and El Niño years. (a) Most jet

events are of the Chaco type, particularly when SST anomalies in the central southern Atlantic Ocean (see green

box) are weak. (b) When a dipole SST anomaly occurs in the central southern Atlantic with the warmer pole

equatorward, the meridional temperature gradient and sea–land temperature contrasts establish an anticyclonic

circulation (dot–dashed line) conducive to increased occurrence of no-Chaco jet events. Other SST anomaly

configurations tend to be present outside the green box (not shown). Winds (vectors) in (a) and (b) are typical for

each case (at 850 hPa; m s21). Green box shows location of SCAD.
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coupling the phases of streamflow from the upper and

lower Paraguay River basins, which currently have a

time delay (Bravo et al. 2011).

7. Summary

In this study we examined the regional climate drivers

of the persistent and heavy NDJF 2015/16 rainfall over

the lower Paraguay River basin that were associated

with severe flood events.

Both enhanced moisture inflow from the low-level jet

and convergence associated with baroclinic systems drove

the observed heavy rainfall. Repeated SALLJ events,

particularly no-Chaco jet events, led to favorable condi-

tions for mesoscale convective activity in this region.

Large-scale climate patterns at both seasonal and sub-

seasonal scales favored the synoptic weather patterns ob-

served. Notably, a strong El Niño and an active MJO in

phases 4–5 favored SALLJ occurrence. The presence of a

dipolar SST anomaly in the central southern Atlantic

Ocean also favored the occurrence of no-Chaco jet events.

Numerical forecasts skillfully predicted enhanced risk

of heavy rainfall at the seasonal scale, consistent with the

observed ENSO signal, but biases in the spatial patterns

of forecast rainfall suggest that models imperfectly

capture the physical interactions between the Pacific and

the Atlantic basins. At subseasonal time scales, un-

corrected model forecasts of rainfall had limited skill

beyond 15 days, although use of model output statistics—

particularly the PCR andCCAmethods that correct both

spatial patterns and magnitudes—substantially improved

forecast skill.
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